Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.269
Filtrar
1.
Biol Res ; 57(1): 15, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38576018

RESUMO

BACKGROUND: Alcohol, a widely abused drug, significantly diminishes life quality, causing chronic diseases and psychiatric issues, with severe health, societal, and economic repercussions. Previously, we demonstrated that non-voluntary alcohol consumption increases the opening of Cx43 hemichannels and Panx1 channels in astrocytes from adolescent rats. However, whether ethanol directly affects astroglial hemichannels and, if so, how this impacts the function and survival of astrocytes remains to be elucidated. RESULTS: Clinically relevant concentrations of ethanol boost the opening of Cx43 hemichannels and Panx1 channels in mouse cortical astrocytes, resulting in the release of ATP and glutamate. The activation of these large-pore channels is dependent on Toll-like receptor 4, P2X7 receptors, IL-1ß and TNF-α signaling, p38 mitogen-activated protein kinase, and inducible nitric oxide (NO) synthase. Notably, the ethanol-induced opening of Cx43 hemichannels and Panx1 channels leads to alterations in cytokine secretion, NO production, gliotransmitter release, and astrocyte reactivity, ultimately impacting survival. CONCLUSION: Our study reveals a new mechanism by which ethanol impairs astrocyte function, involving the sequential stimulation of inflammatory pathways that further increase the opening of Cx43 hemichannels and Panx1 channels. We hypothesize that targeting astroglial hemichannels could be a promising pharmacological approach to preserve astrocyte function and synaptic plasticity during the progression of various alcohol use disorders.


Assuntos
Alcoolismo , Conexina 43 , Camundongos , Ratos , Animais , Conexina 43/metabolismo , Astrócitos/metabolismo , Etanol/toxicidade , Etanol/metabolismo , Alcoolismo/metabolismo , Células Cultivadas , Conexinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo
2.
Int Rev Neurobiol ; 175: 21-73, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38555117

RESUMO

The mesolimbic dopamine pathway plays a major role in drug reinforcement and is likely involved also in the development of drug addiction. Ethanol, like most addictive drugs, acutely activates the mesolimbic dopamine system and releases dopamine, and ethanol-associated stimuli also appear to trigger dopamine release. In addition, chronic exposure to ethanol reduces the baseline function of the mesolimbic dopamine system. The molecular mechanisms underlying ethanol´s interaction with this system remain, however, to be unveiled. Here research on the actions of ethanol in the mesolimbic dopamine system, focusing on the involvement of cystein-loop ligand-gated ion channels, opiate receptors, gastric peptides and acetaldehyde is briefly reviewed. In summary, a great complexity as regards ethanol´s mechanism(s) of action along the mesolimbic dopamine system has been revealed. Consequently, several new targets and possibilities for pharmacotherapies for alcohol use disorder have emerged.


Assuntos
Alcoolismo , Dopamina , Humanos , Dopamina/metabolismo , Etanol/farmacologia , Encéfalo/metabolismo , Alcoolismo/metabolismo , Consumo de Bebidas Alcoólicas
3.
Int Rev Neurobiol ; 175: 75-123, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38555121

RESUMO

The target of alcohol's effect on the central nervous system has been sought for more than 50 years in the brain's GABA system. The behavioral and emotional effects of alcohol in humans and rodents are very similar to those of barbiturates and benzodiazepines, and GABAA receptors have been shown to be one of the sites of alcohol action. The mechanisms of GABAergic inhibition have been a hotspot of research but have turned out to be complex and controversial. Genetics support the involvement of some GABAA receptor subunits in the development of alcohol dependence and in alcohol use disorders (AUD). Since the effect of alcohol on the GABAA system resembles that of a GABAergic positive modulator, it may be possible to develop GABAergic drug treatments that could substitute for alcohol. The adaptation mechanisms of the GABA system and the plasticity of the brain are a big challenge for drug development: the drugs that act on GABAA receptors developed so far also may cause adaptation and development of additional addiction. Human polymorphisms should be studied further to get insight about how they affect receptor function, expression or other factors to make reasonable predictions/hypotheses about what non-addictive interventions would help in alcohol dependence and AUD.


Assuntos
Alcoolismo , Humanos , Alcoolismo/genética , Alcoolismo/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Benzodiazepinas/farmacologia , Etanol/farmacologia , Ácido gama-Aminobutírico/metabolismo
4.
Pharmacol Biochem Behav ; 238: 173741, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38437922

RESUMO

Adolescent binge alcohol drinking is a serious health concern contributing to adult alcohol abuse often associated with anxiety disorders. We have used adolescent intermittent ethanol (AIE) administration as a model of binge drinking in rats in order to explore its long-term effect on the basolateral amygdala (BLA) responsiveness to alcohol and anxiety-like behavior. AIE increased the number of BLA c-Fos positive cells in adult Wistar rats and anxiety-like behavior assessed by the open field test (OFT). Additionally, in adult female rats receiving AIE BLA over expression of miR-182 was found. Therefore, our results indicate that alcohol consumption during adolescence can lead to enduring changes in anxiety-like behavior and BLA susceptibility to alcohol that may be mediated by sex-dependent epigenetic changes. These results contribute to understanding the mechanisms involved in the development of alcohol use disorders (AUD) and anxiety-related disorders.


Assuntos
Alcoolismo , MicroRNAs , Ratos , Feminino , Animais , Alcoolismo/metabolismo , Ratos Wistar , Etanol/farmacologia , Etanol/metabolismo , Ansiedade , Transtornos de Ansiedade/genética , Tonsila do Cerebelo/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo
5.
J Neurosci ; 44(16)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38453466

RESUMO

Chronic pain and alcohol use disorder (AUD) are highly comorbid, and patients with chronic pain are more likely to meet the criteria for AUD. Evidence suggests that both conditions alter similar brain pathways, yet this relationship remains poorly understood. Prior work shows that the anterior insular cortex (AIC) is involved in both chronic pain and AUD. However, circuit-specific changes elicited by the combination of pain and alcohol use remain understudied. The goal of this work was to elucidate the converging effects of binge alcohol consumption and chronic pain on AIC neurons that send projections to the dorsolateral striatum (DLS). Here, we used the Drinking-in-the-Dark (DID) paradigm to model binge-like alcohol drinking in mice that underwent spared nerve injury (SNI), after which whole-cell patch-clamp electrophysiological recordings were performed in acute brain slices to measure intrinsic and synaptic properties of AIC→DLS neurons. In male, but not female, mice, we found that SNI mice with no prior alcohol exposure consumed less alcohol compared with sham mice. Electrophysiological analyses showed that AIC→DLS neurons from SNI-alcohol male mice displayed increased neuronal excitability and increased frequency of miniature excitatory postsynaptic currents. However, mice exposed to alcohol prior to SNI consumed similar amounts of alcohol compared with sham mice following SNI. Together, our data suggest that the interaction of chronic pain and alcohol drinking have a direct effect on both intrinsic excitability and synaptic transmission onto AIC→DLS neurons in mice, which may be critical in understanding how chronic pain alters motivated behaviors associated with alcohol.


Assuntos
Alcoolismo , Consumo Excessivo de Bebidas Alcoólicas , Dor Crônica , Doenças do Sistema Nervoso Periférico , Humanos , Camundongos , Animais , Masculino , Dor Crônica/metabolismo , Córtex Insular , Consumo Excessivo de Bebidas Alcoólicas/metabolismo , Etanol/farmacologia , Neurônios/metabolismo , Alcoolismo/metabolismo , Doenças do Sistema Nervoso Periférico/metabolismo
6.
Biosci Rep ; 44(3)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38419509

RESUMO

Acute alcoholic hepatitis (AAH) from binge drinking is a serious disease. It is associated with a high mortality rate, especially among young adults. Apoptosis is known to be a primary cause of liver damage, and it can be induced by either intrinsic signaling pathways or by reactive oxygen species (ROS). Adenosine A1 receptors (ADORA1) are known to be involved in ethanol metabolism; however, underlying mechanism is not well understood. For investigating how the intrinsic ADORA1 function in ethanol metabolism in normal human hepatocytes without interference by extrinsic molecules, primary hepatocytes pose a challenge, due to unavoidable contamination by other kinds of cells in the liver. Also, they are difficult to culture stably. As a novel alternative, hepatocytes derived from human-induced pluripotent stem cells were employed because they display similar function to primary hepatocytes and they can be stably cultured. The dynamics and integrity of signal transduction mechanisms were investigated by following chronological changes in gene expression. This shed light on how and when the ADORA1 function and on causal relationships between the pathways and clinical symptoms. The findings of the present study shows that ADORA1 are most activated soon after exposure to ethanol, and transfection of small interfering RNA targeting ADORA1-messenger-RNA (ADORA1-siRNA) into the hepatocytes significantly suppresses production of actin protein and ROS. It suggests that ADORA1 in the liver contribute to apoptosis in acute alcoholism through both intrinsic pathway and ROS activity. Also, actin that is abundant in the cells could be an appropriate biomarker evaluating hepatic function status.


Assuntos
Alcoolismo , Células-Tronco Pluripotentes Induzidas , Humanos , Receptor A1 de Adenosina/genética , Alcoolismo/genética , Alcoolismo/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Actinas/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Hepatócitos/metabolismo , Etanol/farmacologia
7.
Life Sci ; 343: 122508, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38382873

RESUMO

Alcohol intake provokes severe organ injuries including alcoholic cardiomyopathy with hallmarks of cardiac remodeling and contractile defects. This study examined the toxicity of facilitated ethanol metabolism in alcoholism-evoked changes in myocardial morphology and contractile function, insulin signaling and various cell death domains using cardiac-selective overexpression of alcohol dehydrogenase (ADH). WT and ADH mice were offered an alcohol liquid diet for 12 weeks prior to assessment of cardiac geometry, function, ER stress, apoptosis and ferroptosis. Alcohol intake provoked pronounced glucose intolerance, cardiac remodeling and contractile anomalies with apoptosis, ER stress, and ferroptosis, the effects were accentuated by ADH with the exception of global glucose intolerance. Hearts from alcohol ingesting mice displayed dampened insulin-stimulated phosphorylation of insulin receptor (tyr1146) and IRS-1 (tyrosine) along with elevated IRS-1 serine phosphorylation, the effect was augmented by ADH. Alcohol challenge dampened phosphorylation of Akt and GSK-3ß, and increased phosphorylation of c-Jun and JNK, the effects were accentuated by ADH. Alcohol challenge promoted ER stress, FK506 binding protein 5 (FKBP5), YAP, apoptosis and ferroptosis, the effects were exaggerated by ADH. Using a short-term ethanol challenge model (3 g/kg, i.p., twice in three days), we found that inhibition of FKBP5-YAP signaling or facilitated ethanol detoxification by Alda-1 alleviated ethanol cardiotoxicity. In vitro study revealed that the ethanol metabolite acetaldehyde evoked cardiac contractile anomalies, lipid peroxidation, and apoptosis, the effects of which were mitigated by Alda-1, inhibition of ER stress, FKBP5 and YAP. These data suggest that facilitated ethanol metabolism via ADH exacerbates alcohol-evoked myocardial remodeling, functional defects, and insulin insensitivity possibly through a FKBP5-YAP-associated regulation of ER stress and ferroptosis.


Assuntos
Alcoolismo , Ferroptose , Intolerância à Glucose , Proteínas de Ligação a Tacrolimo , Camundongos , Animais , Etanol/farmacologia , Álcool Desidrogenase/metabolismo , Álcool Desidrogenase/farmacologia , Intolerância à Glucose/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Remodelação Ventricular , Camundongos Transgênicos , Alcoolismo/complicações , Alcoolismo/metabolismo , Contração Miocárdica , Insulina/metabolismo , Miócitos Cardíacos/metabolismo
8.
Clin Transl Gastroenterol ; 15(4): e00689, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38334953

RESUMO

INTRODUCTION: Only 20%-30% of individuals with alcohol use disorder (AUD) develop alcoholic liver disease (ALD). While the development of gut-derived endotoxemia is understood to be a required cofactor, increased intestinal permeability in ALD is not completely understood. METHODS: We recruited 178 subjects-58 healthy controls (HCs), 32 with ALD, 53 with AUD but no liver disease (ALC), and 35 with metabolic dysfunction-associated steatotic liver disease (MASLD). Intestinal permeability was assessed by a sugar cocktail as a percentage of oral dose. The permeability test was repeated after an aspirin challenge in a subset. RESULTS: Five-hour urinary lactulose/mannitol ratio (primarily representing small intestinal permeability) was not statistically different in HC, ALC, ALD, and MASLD groups ( P = 0.40). Twenty-four-hour urinary sucralose (representing whole gut permeability) was increased in ALD ( F = 5.3, P < 0.01) and distinguished ALD from ALC; 24-hour sucralose/lactulose ratio (primarily representing colon permeability) separated the ALD group ( F = 10.2, P < 0.01) from the MASLD group. After aspirin challenge, intestinal permeability increased in all groups and ALD had the largest increase. DISCUSSION: In a group of patients, we confirmed that (i) the ALD group has increased intestinal permeability compared with the HC, ALC, or MASLD group. In addition, because small bowel permeability (lactulose/mannitol ratio) is normal, the disruption of intestinal barrier seems to be primarily in the large intestine; (ii) decreased resiliency of intestinal barrier to injurious agents (such as NSAID) might be the mechanism for gut leak in subset of AUD who develop ALD.


Assuntos
Mucosa Intestinal , Lactulose , Hepatopatias Alcoólicas , Manitol , Permeabilidade , Sacarose/análogos & derivados , Humanos , Masculino , Hepatopatias Alcoólicas/metabolismo , Pessoa de Meia-Idade , Feminino , Lactulose/urina , Lactulose/administração & dosagem , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Adulto , Manitol/urina , Manitol/administração & dosagem , Estudos de Casos e Controles , Aspirina/administração & dosagem , Absorção Intestinal/efeitos dos fármacos , Sacarose/administração & dosagem , Alcoolismo/complicações , Alcoolismo/metabolismo , Idoso , 60435
9.
Int J Mol Sci ; 25(3)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38338883

RESUMO

The rates of alcohol use disorder among women are growing, yet little is known about how the female brain is affected by alcohol. The neuroimmune system, and specifically microglia, have been implicated in mediating alcohol neurotoxicity, but most preclinical studies have focused on males. Further, few studies have considered changes to the microglial phenotype when examining the effects of ethanol on brain structure and function. Therefore, we quantified microglial reactivity in female rats using a binge model of alcohol dependence, assessed through morphological and phenotypic marker expression, coupled with regional cytokine levels. In a time- and region-dependent manner, alcohol altered the microglial number and morphology, including the soma and process area, and the overall complexity within the corticolimbic regions examined, but no significant increases in the proinflammatory markers MHCII or CD68 were observed. The majority of cytokine and growth factor levels examined were similarly unchanged. However, the expression of the proinflammatory cytokine TNFα was increased, and the anti-inflammatory IL-10, decreased. Thus, female rats showed subtle differences in neuroimmune reactivity compared to past work in males, consistent with reports of enhanced neuroimmune responses in females across the literature. These data suggest that specific neuroimmune reactions in females may impact their susceptibility to alcohol neurotoxicity and other neurodegenerative events with microglial contributions.


Assuntos
Alcoolismo , Humanos , Masculino , Ratos , Animais , Feminino , Alcoolismo/metabolismo , Microglia/metabolismo , Etanol/farmacologia , Encéfalo/metabolismo , Citocinas/metabolismo
10.
Pharmacol Biochem Behav ; 237: 173726, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38360104

RESUMO

BACKGROUND: Some studies have highlighted the crucial role of aversion in addiction treatment. The pathway from the anterior paraventricular thalamus (PVT) to the shell of the nucleus accumbens (NAc) has been reported as an essential regulatory pathway for processing aversion and is also closely associated with substance addiction. However, its impact on alcohol addiction has been relatively underexplored. Therefore, this study focused on the role of the PVT-NAc pathway in the formation and relapse of alcohol addiction-like behaviour, offering a new perspective on the mechanisms of alcohol addiction. RESULTS: The chemogenetic inhibition of the PVT-NAc pathway in male mice resulted in a notable decrease in the establishment of ethanol-induced conditioned place aversion (CPA), and NAc-projecting PVT neurons were recruited due to aversive effects. Conversely, activation of the PVT-NAc pathway considerably impeded the formation of ethanol-induced conditioned place preference (CPP). Furthermore, during the memory reconsolidation phase, activation of this pathway effectively disrupted the animals' preference for alcohol-associated contexts. Whether it was administered urgently 24 h later or after a long-term withdrawal of 10 days, a low dose of alcohol could still not induce the reinstatement of ethanol-induced CPP. CONCLUSIONS: Our results demonstrated PVT-NAc circuit processing aversion, which may be one of the neurobiological mechanisms underlying aversive counterconditioning, and highlighted potential targets for inhibiting the development of alcohol addiction-like behaviour and relapse after long-term withdrawal.


Assuntos
Alcoolismo , Núcleo Accumbens , Camundongos , Masculino , Animais , Núcleo Accumbens/metabolismo , Alcoolismo/metabolismo , Tálamo , Etanol/farmacologia , Etanol/metabolismo , Recidiva
11.
Eur J Neurosci ; 59(7): 1519-1535, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38185886

RESUMO

Harmful alcohol consumption is a major socioeconomic burden to the health system, as it can be the cause of mortality of heavy alcohol drinkers. The dopaminergic (DAergic) system is thought to play an important role in the pathogenesis of alcohol drinking behaviour; however, its exact role remains elusive. Fibroblast growth factor 2 (FGF-2), a neurotrophic factor, associated with both the DAergic system and alcohol consumption, may play an important role in DAergic neuroadaptations during alcohol abuse. Within this study, we aimed to clarify the role of endogenous FGF-2 on the DAergic system and whether there is a possible link to alcohol consumption. We found that lack of FGF-2 reduces the alcohol intake of mice. Transcriptome analysis of DAergic neurons revealed that FGF-2 knockout (FGF-2 KO) shifts the molecular fingerprint of midbrain dopaminergic (mDA) neurons to DA subtypes of the ventral tegmental area (VTA). In line with this, proteomic changes predominantly appear also in the VTA. Interestingly, these changes led to an altered regulation of the FGF-2 signalling cascades and DAergic pathways in a region-specific manner, which was only marginally affected by voluntary alcohol consumption. Thus, lack of FGF-2 not only affects the gene expression but also the proteome of specific brain regions of mDA neurons. Our study provides new insights into the neuroadaptations of the DAergic system during alcohol abuse and, therefore, comprises novel targets for future pharmacological interventions.


Assuntos
Alcoolismo , Área Tegmentar Ventral , Camundongos , Animais , Área Tegmentar Ventral/metabolismo , Neurônios Dopaminérgicos/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Alcoolismo/genética , Alcoolismo/metabolismo , Proteômica , Consumo de Bebidas Alcoólicas
12.
Neurosci Biobehav Rev ; 158: 105558, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38244954

RESUMO

This mini-review presents emerging evidence that endogenous neurosteroids modulate both pro- and anti-inflammatory signaling by immune cells and brain cells that contribute to depression, alcohol use disorders, and other inflammatory conditions. We first review the literature on pregnenolone and allopregnanolone inhibition of proinflammatory neuroimmune pathways in the periphery and the brain - effects that are independent of GABAergic mechanisms. We follow with evidence for neurosteroid enhancement of anti-inflammatory and protective pathways in brain and immune cells. These studies draw clinical relevance from a large body of evidence that pro-inflammatory immune signaling is dysregulated in many brain disorders and the fact that neurosteroids inhibit the same inflammatory pathways that are activated in depression, alcohol use disorders and other inflammatory conditions. Thus, we describe evidence that neurosteroid levels are decreased and neurosteroid supplementation has therapeutic efficacy in these neuropsychiatric conditions. We conclude with a perspective that endogenous regulation of immune balance between pro- and anti-inflammatory pathways by neurosteroid signaling is essential to prevent the onset of disease. Deficits in neurosteroids may unleash excessive pro-inflammatory activation which progresses in a feed-forward manner to disrupt brain networks that regulate stress, emotion and motivation. Neurosteroids can block various inflammatory pathways in mouse and human macrophages, rat brain and human blood and therefore provide new hope for treatment of intractable conditions that involve excessive inflammatory signaling.


Assuntos
Alcoolismo , Neuroesteroides , Ratos , Humanos , Camundongos , Animais , Neuroesteroides/metabolismo , Alcoolismo/metabolismo , Encéfalo/metabolismo , Pregnanolona/farmacologia , Pregnanolona/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
13.
Biol Sex Differ ; 15(1): 10, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38273378

RESUMO

BACKGROUND: Alcohol use disorder (AUD) is one of the most common psychiatric disorders, with the consumption of alcohol considered a leading cause of preventable deaths worldwide. Lipids play a crucial functional role in cell membranes; however, we know little about the role of lipids in extracellular vesicles (EVs) as regulatory molecules and disease biomarkers. METHODS: We employed a sensitive lipidomic strategy to characterize lipid species from the plasma EVs of AUD patients to evaluate functional roles and enzymatic activity networks to improve the knowledge of lipid metabolism after alcohol consumption. We analyzed plasma EV lipids from AUD females and males and healthy individuals to highlight lipids with differential abundance and biologically interpreted lipidomics data using LINEX2, which evaluates enzymatic dysregulation using an enrichment algorithm. RESULTS: Our results show, for the first time, that AUD females exhibited more significant substrate-product changes in lysophosphatidylcholine/phosphatidylcholine lipids and phospholipase/acyltransferase activity, which are potentially linked to cancer progression and neuroinflammation. Conversely, AUD males suffer from dysregulated ceramide and sphingomyelin lipids involving sphingomyelinase, sphingomyelin phosphodiesterase, and sphingomyelin synthase activity, which relates to hepatotoxicity. Notably, the analysis of plasma EVs from AUD females and males demonstrates enrichment of lipid ontology terms associated with "negative intrinsic curvature" and "positive intrinsic curvature", respectively. CONCLUSIONS: Our methodological developments support an improved understanding of lipid metabolism and regulatory mechanisms, which contribute to the identification of novel lipid targets and the discovery of sex-specific clinical biomarkers in AUD.


Alcohol use disorder (AUD) is one of the most common psychiatric disorders, with the consumption of alcohol considered a leading cause of preventable deaths worldwide. Lipids play a crucial functional role in cell membranes; however, we know little about the role of lipids in extracellular vesicles (EVs) as regulatory molecules and disease biomarkers. We employed a sensitive lipidomic strategy to characterize lipid species from the plasma EVs of AUD patients to evaluate functional roles and enzymatic activity networks to improve the knowledge of lipid metabolism after alcohol consumption. We analyzed plasma EV lipids from AUD females and males and healthy individuals to highlight lipids with differential abundance and biologically interpreted lipidomics data using LINEX2, which evaluates enzymatic dysregulation using an enrichment algorithm. Our results show, for the first time, that AUD females exhibited more significant substrate-product changes in lysophosphatidylcholine/phosphatidylcholine lipids and phospholipase/acyltransferase activity, which are potentially linked to cancer progression and neuroinflammation. Conversely, AUD males suffer from dysregulated ceramide and sphingomyelin lipids involving sphingomyelinase, sphingomyelin phosphodiesterase, and sphingomyelin synthase activity, which relates to hepatotoxicity. Notably, the analysis of plasma EVs from AUD females and males demonstrates enrichment of lipid ontology terms associated with "negative intrinsic curvature" and "positive intrinsic curvature", respectively. Our methodological developments support an improved understanding of lipid metabolism and regulatory mechanisms, which contribute to the identification of novel lipid targets and the discovery of sex-specific clinical biomarkers in AUD.


Assuntos
Alcoolismo , Vesículas Extracelulares , Masculino , Feminino , Humanos , Lipidômica , Lipídeos , Alcoolismo/metabolismo , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Biomarcadores , Consumo de Bebidas Alcoólicas
14.
Alcohol Alcohol ; 59(1)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-37950904

RESUMO

Ethanol metabolism plays an essential role in how the body perceives and experiences alcohol consumption, and evidence suggests that modulation of ethanol metabolism can alter the risk for alcohol use disorder (AUD). In this review, we explore how ethanol metabolism, mainly via alcohol dehydrogenase and aldehyde dehydrogenase 2 (ALDH2), contributes to drinking behaviors by integrating preclinical and clinical findings. We discuss how alcohol dehydrogenase and ALDH2 polymorphisms change the risk for AUD, and whether we can harness that knowledge to design interventions for AUD that alter ethanol metabolism. We detail the use of disulfiram, RNAi strategies, and kudzu/isoflavones to inhibit ALDH2 and increase acetaldehyde, ideally leading to decreases in drinking behavior. In addition, we cover recent preclinical evidence suggesting that strategies other than increasing acetaldehyde-mediated aversion can decrease ethanol consumption, providing other potential metabolism-centric therapeutic targets. However, modulating ethanol metabolism has inherent risks, and we point out some of the key areas in which more data are needed to mitigate these potential adverse effects. Finally, we present our opinions on the future of treating AUD by the modulation of ethanol metabolism.


Assuntos
Alcoolismo , Humanos , Alcoolismo/tratamento farmacológico , Alcoolismo/metabolismo , Etanol/efeitos adversos , Aldeído-Desidrogenase Mitocondrial/genética , Aldeído Desidrogenase/metabolismo , Álcool Desidrogenase , Consumo de Bebidas Alcoólicas/efeitos adversos , Acetaldeído/metabolismo
15.
Behav Neurosci ; 138(1): 1-14, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37589722

RESUMO

Maintaining abstinence and preventing relapse are key to the successful recovery from alcohol use disorder. There are two main ways individuals with alcohol use disorder abstain from alcohol use: forced (e.g., incarceration) and voluntary. Voluntary abstinence is often evoked due to the negative consequences associated with excessive alcohol consumption. This study investigated relapse-like behavior to alcohol seeking following acute, forced, and voluntary abstinence. Male rats had increased operant self-administration responding throughout training compared to females; however, females consumed greater amounts of alcohol in g/kg. Both male and female rats achieved voluntary abstinence, which was induced using an electric barrier on the operant chamber floor with alcohol readily available during this period. Interestingly, male rats that underwent voluntary abstinence displayed reduced alcohol seeking compared to males in the acute and forced abstinence groups. This difference in alcohol seeking behavior across abstinence groups was not observed in female rats. Quantification of neuronal activation (Fos protein) revealed numerous brain regions (e.g., ventral subiculum and lateral habenula) to be associated with the reduced reinstatement propensity seen in male rats that underwent voluntary abstinence. Additionally, hierarchical clustering found enhanced functional connectivity and coordination in the male voluntary abstinence group compared to the male forced abstinence group. Collectively, these data implicate a sexual dimorphism in the effect that voluntary abstinence, at least in the model employed here, has on relapse-like behavior. This maybe driven by reduced neuronal activation at a network level and enhanced functional connectivity and integration. (PsycInfo Database Record (c) 2024 APA, all rights reserved).


Assuntos
Alcoolismo , Ratos , Masculino , Feminino , Animais , Alcoolismo/metabolismo , Consumo de Bebidas Alcoólicas , Etanol , Encéfalo/metabolismo , Recidiva , Autoadministração , Comportamento de Procura de Droga , Condicionamento Operante
16.
Psychopharmacology (Berl) ; 241(1): 33-47, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37682294

RESUMO

INTRODUCTION: Alcohol use disorder (AUD) is one of the most common psychiatric disorders and a leading cause of mortality worldwide. While the pathophysiology underlying AUD is relatively well known, the cognitive mechanisms of an individual's susceptibility to the development of alcohol dependence remain poorly understood. In this study, we investigated the theoretical claim that sensitivity to positive feedback (PF), as a stable and enduring behavioural trait, can predict individual susceptibility to the acquisition and maintenance of alcohol-seeking behaviour in rats. METHODS: Trait sensitivity to PF was assessed using a series of probabilistic reversal learning tests. The escalation of alcohol intake in rats was achieved by applying a mix of intermittent free access and instrumental paradigms of alcohol drinking. The next steps included testing the influence of sensitivity to PF on the acquisition of compulsive alcohol-seeking behaviour in the seeking-taking punishment task, measuring motivation to seek alcohol, and comparing the speed of extinction and reinstatement of alcohol-seeking after a period of abstinence between rats expressing trait insensitivity and sensitivity to PF. Finally, trait differences in the level of stress hormones and in the expression of genes and proteins in several brain regions of interest were measured to identify potential physiological and neuromolecular mechanisms of the observed interactions. RESULTS: We showed that trait sensitivity to PF in rats determines the level of motivation to seek alcohol following the experience of its negative consequences. They also revealed significant differences between animals classified as insensitive and sensitive to PF in their propensity to reinstate alcohol-seeking behaviours after a period of forced abstinence. The abovementioned effects were accompanied by differences in blood levels of stress hormones and differences in the cortical and subcortical expression of genes and proteins related to dopaminergic, serotonergic, and GABAergic neurotransmission. CONCLUSION: Trait sensitivity to PF can determine the trajectory of alcohol addiction in rats. This effect is, at least partially, mediated via distributed physiological and molecular changes within cortical and subcortical regions of the brain.


Assuntos
Consumo de Bebidas Alcoólicas , Alcoolismo , Humanos , Ratos , Masculino , Animais , Retroalimentação , Consumo de Bebidas Alcoólicas/psicologia , Alcoolismo/metabolismo , Etanol , Comportamento Compulsivo/psicologia , Hormônios , Causalidade , Autoadministração
17.
Biol Psychiatry ; 95(3): 275-285, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37562519

RESUMO

BACKGROUND: The ventral tegmental area (VTA) is a dopaminergic brain area that is critical in the development and maintenance of addiction. During withdrawal from chronic ethanol exposure, the response of VTA neurons to GABA (gamma-aminobutyric acid) is reduced through an epigenetically regulated mechanism. In the current study, a whole-genome transcriptomic approach was used to investigate the underlying molecular mechanism of GABA hyposensitivity in the VTA during withdrawal after chronic ethanol exposure. METHODS: We performed RNA sequencing of the VTA of Sprague Dawley male rats withdrawn for 24 hours from a chronic ethanol diet as well as sequencing of the VTA of control rats fed the Lieber-DeCarli diet. RNA sequencing data were analyzed using weighted gene coexpression network analysis to identify modules that contained coexpressed genes. Validation was performed with quantitative polymerase chain reaction, gas chromatography-mass spectrometry, and electrophysiological assays. RESULTS: Pathway and network analysis of weighted gene coexpression network analysis module 1 revealed a significant downregulation of genes associated with the cholesterol synthesis pathway. Consistent with this association, VTA cholesterol levels were significantly decreased during withdrawal. Chromatin immunoprecipitation indicated a decrease in levels of acetylated H3K27 at the transcriptional control regions of these genes. Electrophysiological studies in VTA slices demonstrated that GABA hyposensitivity during withdrawal was normalized by addition of exogenous cholesterol. In addition, inhibition of cholesterol synthesis produced GABA hyposensitivity, which was reversed by adding exogenous cholesterol to VTA slices. CONCLUSIONS: These results suggest that decreased expression of cholesterol synthesis genes may regulate GABA hyposensitivity of VTA neurons during alcohol withdrawal. Increasing cholesterol levels in the brain may be a novel avenue for therapeutic intervention to reverse detrimental effects of chronic alcohol exposure.


Assuntos
Alcoolismo , Síndrome de Abstinência a Substâncias , Ratos , Masculino , Animais , Ácido gama-Aminobutírico/metabolismo , Síndrome de Abstinência a Substâncias/genética , Síndrome de Abstinência a Substâncias/metabolismo , Área Tegmentar Ventral , Alcoolismo/metabolismo , Ratos Sprague-Dawley , Etanol/farmacologia
18.
J Agric Food Chem ; 71(49): 19531-19550, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38038704

RESUMO

Increasing evidence points to the critical role of calcium overload triggered by mitochondrial dysfunction in the development of alcoholic liver disease (ALD). As an important organelle for aerobic respiration with a double-layered membrane, mitochondria are pivotal targets of alcohol metabolism-mediated lipid peroxidation, wherein mitochondria-specific phospholipid cardiolipin oxidation to 4-hydroxynonenal (4-HNE) ultimately leads to mitochondrial integrity and function impairment. Therefore, it is absolutely essential to identify effective nutritional intervention targeting mitochondrial redox function for an alternative therapy of ALD, in order to compensate for the difficulty in achieving alcohol withdrawal due to addiction. In this study, we confirmed the significant advantages of astaxanthin (AX) against alcohol toxicity among various carotenoids via cell experiments and identified the potential in mitochondrion morphogenesis and calcium signaling pathway by bioinformatics analysis. The ALD model of Sprague-Dawley (SD) rats was also generated to investigate the effectiveness of AX on alcohol-induced liver injury, and the underlying mechanisms were further explored. AX intervention attenuated alcohol-induced oxidative stress and lipid peroxidation as well as mitochondrial dysfunction characterized by degenerative morphology changes and collapsed membrane potential. Also, AX reduced the production of 4-HNE by activating the Nrf2-ARE signaling pathway, which is closely associated with the redox balance of mitochondria. In addition, relieved mitochondrial Ca2+ accumulation caused by AX was observed both in vivo and in vitro. Furthermore, we revealed the structure-activity relationship of AX and mitochondrial membrane channel proteins MCU and VDAC1, implying potential acting targets. Altogether, our data indicated a new mechanism of AX intervention which protects against alcohol-induced liver injury through restoring redox balance and Ca2+ homeostasis in mitochondria, as well as provided novel insights into the development of AX as a therapeutic option for the management of ALD.


Assuntos
Alcoolismo , Doença Hepática Crônica Induzida por Substâncias e Drogas , Hepatopatias Alcoólicas , Doenças Mitocondriais , Síndrome de Abstinência a Substâncias , Ratos , Animais , Cálcio/metabolismo , Alcoolismo/metabolismo , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Ratos Sprague-Dawley , Síndrome de Abstinência a Substâncias/metabolismo , Mitocôndrias/metabolismo , Oxirredução , Fígado/metabolismo , Estresse Oxidativo , Hepatopatias Alcoólicas/genética , Hepatopatias Alcoólicas/prevenção & controle , Hepatopatias Alcoólicas/metabolismo , Etanol/metabolismo , Proteínas de Membrana/metabolismo , Doenças Mitocondriais/metabolismo , Homeostase
19.
Cells ; 12(21)2023 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-37947650

RESUMO

During adolescence, the brain is highly susceptible to alcohol-induced damage and subsequent neuroimmune responses, effects which may enhance development of an alcohol use disorder (AUD). Neuroimmune reactions are implicated in adolescent alcohol exposure escalating adulthood drinking. Therefore, we investigated whether intermittent alcohol exposure in male, adolescent rats (AIE) escalated adult drinking via two-bottle choice (2BC). We also examined the influence of housing environment across three groups: standard (group-housed with enrichment during 2BC), impoverished (group-housed without enrichment during 2BC), or isolation (single-housed without bedding or enrichment throughout). In the standard group immediately after AIE/saline and after 2BC, we also examined the expression of microglial marker, Iba1, reactive astrocyte marker, vimentin, and neuronal cell death dye, FluoroJade B (FJB). We did not observe an escalation of adulthood drinking following AIE, regardless of housing condition. Further, only a modest neuroimmune response occurred after AIE in the standard group: no significant microglial reactivity or neuronal cell death was apparent using this model, although some astrocyte reactivity was detected in adolescence following AIE that resolved by adulthood. These data suggest that the lack of neuroimmune response in adolescence in this model may underlie the lack of escalation of alcohol drinking, which could not be modified through isolation stress.


Assuntos
Alcoolismo , Etanol , Ratos , Masculino , Animais , Etanol/farmacologia , Doenças Neuroinflamatórias , Consumo de Bebidas Alcoólicas/efeitos adversos , Alcoolismo/metabolismo , Encéfalo/metabolismo
20.
Transl Psychiatry ; 13(1): 318, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833300

RESUMO

Alcohol use disorder (AUD) affects transcriptomic, epigenetic and proteomic expression in several organs, including the brain. There has not been a comprehensive analysis of altered protein abundance focusing on the multiple brain regions that undergo neuroadaptations occurring in AUD. We performed a quantitative proteomic analysis using a liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis of human postmortem tissue from brain regions that play key roles in the development and maintenance of AUD, the amygdala (AMG), hippocampus (HIPP), hypothalamus (HYP), nucleus accumbens (NAc), prefrontal cortex (PFC) and ventral tegmental area (VTA). Brain tissues were from adult males with AUD (n = 11) and matched controls (n = 16). Across the two groups, there were >6000 proteins quantified with differential protein abundance in AUD compared to controls in each of the six brain regions. The region with the greatest number of differentially expressed proteins was the AMG, followed by the HYP. Pathways associated with differentially expressed proteins between groups (fold change > 1.5 and LIMMA p < 0.01) were analyzed by Ingenuity Pathway Analysis (IPA). In the AMG, adrenergic, opioid, oxytocin, GABA receptor and cytokine pathways were among the most enriched. In the HYP, dopaminergic signaling pathways were the most enriched. Proteins with differential abundance in AUD highlight potential therapeutic targets such as oxytocin, CSNK1D (PF-670462), GABAB receptor and opioid receptors and may lead to the identification of other potential targets. These results improve our understanding of the molecular alterations of AUD across brain regions that are associated with the development and maintenance of AUD. Proteomic data from this study is publicly available at www.lmdomics.org/AUDBrainProteomeAtlas/ .


Assuntos
Alcoolismo , Masculino , Adulto , Humanos , Alcoolismo/metabolismo , Ocitocina , Proteômica , Cromatografia Líquida , Espectrometria de Massas em Tandem , Encéfalo/metabolismo , Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...